3_Docker数据卷实践
Docker 三种数据挂载方式(Named Volume、Bind Mount、tmpfs)的原理、选型策略与生产避坑指南。
Docker 三种数据挂载方式(Named Volume、Bind Mount、tmpfs)的原理、选型策略与生产避坑指南。
Docker 网络是容器通信的基础设施层。选错网络模式可能带来安全暴露、性能损耗或排障噩梦。本文从 Linux 内核的网络原语出发,逐层拆解 Docker 网络的实现机制,覆盖单机网络、跨主机网络和生产实战。
你一定见过这个报错:
1 | Access to XMLHttpRequest at 'https://api.com/data' |
Postman 能调通,浏览器就不行——问题不在接口,而在浏览器的同源策略(Same-Origin Policy, SOP)。
跨域指的是:网页脚本试图访问与自身协议(scheme)、域名(host)、端口(port)任一不同的资源时,浏览器对这次访问施加的限制。
请求已经发出去了,服务端也已经处理并返回了响应。浏览器拦截的是响应——它不让 JS 读取返回的数据。
类比理解:你住在封闭小区,保安(浏览器)规定只有本小区(同源)的快递可以签收。外面的快递员(跨域请求)想送货进来,必须由物业(服务端)提前开好通行证(CORS 响应头),保安验证通过才放行。
MacBook 作为本地开发服务器或家庭服务器时,需要解决两个核心问题:防止系统休眠和远程访问。
MacBook 默认在空闲时进入睡眠状态,这会中断服务运行。以下是两种解决方案:
「系统设置 → 电池 → 选项」:开启当显示器关闭时,防止 Mac 自动进入睡眠。
Amphetamine 是一款 App Store 免费工具,提供更灵活的控制:
Claude Agent SDK 是 Claude Code 的可编程库,支持 Python 和 TypeScript。本文演示 query() 和 ClaudeSDKClient 两种使用方式。
Armbian 不是独立的 Linux 发行版,而是基于 Debian/Ubuntu 构建的镜像框架,为 ARM 开发板提供优化的内核和设备树支持。
为什么不直接刷 Ubuntu?RK3566 等 ARM 盒子没有 PC 的标准启动方式(UEFI/ACPI),启动依赖 U-Boot + 设备树/驱动。通用 Ubuntu Server ARM64 镜像缺乏底层适配,直接写盘大概率无法启动或缺少网卡/USB 驱动。
Armbian 提供 Ubuntu flavor(Noble/Jammy 等),用户态是 Ubuntu apt 生态,底层由 Armbian 负责适配。若目标是稳定运行 Docker,推荐 Debian 12。
启动方式对比:
Clawdbot 不仅仅是一个 AI 聊天机器人,它是一个本地运行的智能代理网关。与其将 AI 限制在对话框中,Clawdbot 旨在打通模型与物理设备的 “ 最后一公里 “,将 LLM 的推理能力转化为系统级的执行力。
它通过标准化的协议连接消息渠道(Telegram/Slack)、本地工具(CLI/Browser)和上下文记忆,构建了一个完全私有化、可扩展的 AI 操作系统。
传统的 AI 交互往往止步于文本输出,而 Clawdbot 建立了一套完整的 “ 感知 - 决策 - 执行 “ 闭环:
下面是 Clawdbot 的系统交互逻辑:
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#4F46E5', 'primaryTextColor': '#fff', 'primaryBorderColor': '#3730A3', 'lineColor': '#6366F1'}}}%%
flowchart LR
User(["用户 (User)"])
subgraph Channels ["消息接入层"]
TG["Telegram"]
Discord["Discord"]
Slack["Slack"]
end
subgraph Core ["Clawdbot 核心引擎"]
Gateway["网关服务"]
Planner["任务规划"]
Memory[("本地记忆库")]
end
subgraph Actions ["执行层"]
Shell["系统命令"]
Browser["浏览器自动化"]
Cron["定时任务"]
end
User --> Channels
Channels --> Gateway
Gateway <--> Memory
Gateway --> Planner
Planner --> Actions
classDef primary fill:#4F46E5,stroke:#3730A3,color:#fff
classDef success fill:#10B981,stroke:#059669,color:#fff
classDef channel fill:#06B6D4,stroke:#0891B2,color:#fff
class Core primary
class Actions success
class Channels channelContext7 是基于 MCP 的开发者文档检索引擎,解决 LLM 的 知识截断 问题。
sequenceDiagram
participant User
participant IDE as Cursor
participant C7 as Context7
participant Docs as 官方文档
User->>IDE: "Upstash Redis 怎么用?"
IDE->>C7: search_docs("Upstash Redis")
C7->>Docs: 获取最新文档
Docs-->>C7: 返回 Markdown
C7-->>IDE: 注入上下文
IDE-->>User: 生成准确代码核心特性:
Next.js v14),避免 API 错误use context7)